Get species information from the EASIN's Catalogue Web Service
Source:R/get_species.R
get_species.Rd
This function retrieves species information from the EASIN's Catalogue. Users can retrieve records by species’ scientific name, environment, impact, taxonomy, Union concern status (LegalFramework). More on EASIN Web Services.
Usage
get_species(
easin_id = NULL,
scientific_name = NULL,
environment = NULL,
country_code = NULL,
region_code = NULL,
impact = NULL,
taxon = NULL,
taxonomy = NULL,
present_in_country = NULL,
union_concern = NULL
)
Arguments
- easin_id
Integer. EASIN Species ID(s).
- scientific_name
Character. Scientific name(s) or part(s) of it. Case insensitive.
- environment
Character. Environment type(s): one or more from
"MAR"
,"FRW"
,"TER"
,"OLI"
to filter species by, marine, freshwater, terrestrial or oligohaline environments respectively.- country_code
Character. Countries' ISO 3166-1 alpha-2 code(s) to filter species of Member State concern. Use
countries()
to look up the list of codes. Source: EASIN Catalogue Web Service documentation. Only few states submitted their species of Member State concern to EASIN.- region_code
Character. Species of Outermost regions concern codes as defined in NUTS (Nomenclature of territorial units for statistics). Use
regions()
to look up the list of codes. Source: EASIN Catalogue Web Service documentation.- impact
Character. Species impact. One of
"hi"
(high) or"lo"
(low).- taxon
Character named vector of length 1 with the taxon name named by its taxonomic rank. Use
ranks()
to look up the list of valid ranks. Source: EASIN Catalogue Web Service documentation.- taxonomy
Character named vector with the taxonomic names named by their taxonomic rank. Provide them in the right order from kingdom up to family. Source: EASIN Catalogue Web Service documentation.
- present_in_country
Character. Countries' ISO 3166-1 alpha-2 code to filter species present in that country. Use
countries()
to look up the list of codes. Source: EASIN Catalogue Web Service documentation.- union_concern
Logical. If
TRUE
, returns only species of Union concern. OnlyTRUE
is allowed.
Details
List of supported Outermost region codes (argument region_code
):
ES7
: Canary IslandsFRY1
: GuadeloupeFRY2
: MartiniqueFRY3
: French GuianaFRY4
: RéunionFRY5
: MayotteFRY6
: Saint MartinPT2
: AzoresPT3
: Madeira
Examples
# Get list of all species in the EASIN catalogue
get_species()
#> # A tibble: 14,353 × 12
#> EasinID Name Authorship LSID Reference HasImpact IsEUConcern IsMSConcern
#> <chr> <chr> <chr> <chr> <chr> <lgl> <lgl> <lgl>
#> 1 R19422 Candida… "Fagen et… urn:… https://… FALSE FALSE FALSE
#> 2 R11525 Candida… "" urn:… https://… FALSE FALSE FALSE
#> 3 R19423 Candida… "" urn:… https://… FALSE FALSE FALSE
#> 4 R19424 Candida… "" urn:… https://… FALSE FALSE FALSE
#> 5 R19425 Candida… "" urn:… https://… FALSE FALSE FALSE
#> 6 R19426 Candida… "" urn:… https://… FALSE FALSE FALSE
#> 7 R19427 Candida… "" urn:… https://… FALSE FALSE FALSE
#> 8 R19428 Candida… "" urn:… https://… FALSE FALSE FALSE
#> 9 R11526 Candida… "" urn:… https://… TRUE FALSE FALSE
#> 10 R19429 Candida… "" urn:… https://… FALSE FALSE FALSE
#> # ℹ 14,343 more rows
#> # ℹ 4 more variables: IsOutermostConcern <lgl>, IsPartNative <lgl>,
#> # IsHorizonScanning <lgl>, Status <chr>
# Get list of all species of Union concern
get_species(union_concern = TRUE)
#> # A tibble: 114 × 25
#> EASINID Name Authorship FirstIntroductionsInEU PresentInCountries Status
#> <chr> <chr> <chr> <list> <list> <chr>
#> 1 R00046 Acacia m… De Wild. <df [1 × 3]> <df [8 × 1]> A
#> 2 R00053 Acacia s… (Labill.)… <df [1 × 3]> <df [22 × 1]> A
#> 3 R00210 Acridoth… (Linnaeus… <df [1 × 3]> <df [9 × 1]> A
#> 4 R00212 Acridoth… (Linnaeus… <df [1 × 3]> <df [24 × 1]> A
#> 5 R00460 Ailanthu… (Mill.) S… <df [1 × 3]> <df [52 × 1]> A
#> 6 R00644 Alopoche… (Linnaeus… <df [1 × 3]> <df [38 × 1]> A
#> 7 R00669 Alternan… (Mart.) G… <df [1 × 3]> <df [4 × 1]> A
#> 8 R00826 Ameiurus… (Rafinesq… <df [1 × 3]> <df [30 × 1]> A
#> 9 R00994 Andropog… L. <df [1 × 3]> <df [3 × 1]> A
#> 10 R01506 Arthurde… (Dendy, 1… <df [1 × 3]> <df [8 × 1]> A
#> # ℹ 104 more rows
#> # ℹ 19 more variables: HasImpact <lgl>, IsEUConcern <lgl>, EUConcernName <chr>,
#> # IsOutermostConcern <lgl>, ConcernedOutermostRegions <list>,
#> # IsMSConcern <lgl>, ConcernedMS <list>, IsPartNative <lgl>,
#> # NativeRange <list>, IsHorizonScanning <lgl>, LastRevisionDate <lgl>,
#> # Kingdom <chr>, Phylum <chr>, Class <chr>, Order <chr>, Family <chr>,
#> # CommonNames <list>, Synonyms <list>, CBD_Pathways <list>
# Get info about one or more species by EASIN Species IDs
get_species(easin_id = c("R00460", "R12250"))
#> # A tibble: 2 × 25
#> EASINID Name Authorship FirstIntroductionsInEU PresentInCountries Status
#> <chr> <chr> <chr> <list> <list> <chr>
#> 1 R00460 Ailanthus… (Mill.) S… <df [1 × 3]> <df [52 × 1]> A
#> 2 R12250 Procambar… (Girard, … <df [1 × 3]> <df [24 × 1]> A
#> # ℹ 19 more variables: HasImpact <lgl>, IsEUConcern <lgl>, EUConcernName <lgl>,
#> # IsOutermostConcern <lgl>, ConcernedOutermostRegions <list>,
#> # IsMSConcern <lgl>, ConcernedMS <list>, IsPartNative <lgl>,
#> # NativeRange <lgl>, IsHorizonScanning <lgl>, LastRevisionDate <lgl>,
#> # Kingdom <chr>, Phylum <chr>, Class <chr>, Order <chr>, Family <chr>,
#> # CommonNames <list>, Synonyms <list>, CBD_Pathways <list>
# Get info about one or more species by scientific names or parts of it
get_species(scientific_name = c("Aceria ambrosia", "Procambarus"))
#> # A tibble: 4 × 25
#> EASINID Name Authorship FirstIntroductionsInEU PresentInCountries Status
#> <chr> <chr> <chr> <list> <list> <chr>
#> 1 R16888 Aceria am… Wilson, 1… <df [1 × 3]> <df [1 × 1]> A
#> 2 R12248 Procambar… Girard, 1… <df [1 × 3]> <df [1 × 1]> A
#> 3 R12250 Procambar… (Girard, … <df [1 × 3]> <df [24 × 1]> A
#> 4 R17660 Procambar… Lyko, 2017 <df [1 × 3]> <df [16 × 1]> A
#> # ℹ 19 more variables: HasImpact <lgl>, IsEUConcern <lgl>, EUConcernName <chr>,
#> # IsOutermostConcern <lgl>, ConcernedOutermostRegions <list>,
#> # IsMSConcern <lgl>, ConcernedMS <list>, IsPartNative <lgl>,
#> # NativeRange <lgl>, IsHorizonScanning <lgl>, LastRevisionDate <lgl>,
#> # Kingdom <chr>, Phylum <chr>, Class <chr>, Order <chr>, Family <chr>,
#> # CommonNames <list>, Synonyms <list>, CBD_Pathways <list>
# Get species by `environment`
get_species(environment = c("MAR","OLI"))
#> # A tibble: 1,861 × 25
#> EASINID Name Authorship FirstIntroductionsInEU PresentInCountries Status
#> <chr> <chr> <chr> <list> <list> <chr>
#> 1 R20136 Ablennes… "(Valenci… <df [1 × 3]> <df [2 × 1]> A
#> 2 R20210 Abudefdu… "(Linnaeu… <df [1 × 3]> <NULL> A
#> 3 R19331 Abudefdu… "(Steinda… <df [1 × 3]> <df [2 × 1]> A
#> 4 R19652 Abudefdu… "(Lacepèd… <df [1 × 3]> <df [4 × 1]> A
#> 5 R19332 Abudefdu… "(Quoy & … <df [1 × 3]> <df [7 × 1]> A
#> 6 R16518 Abyla tr… "Quoy & G… <df [1 × 3]> <df [2 × 1]> Q
#> 7 R17484 Acanthar… "(Forest,… <df [1 × 3]> <df [1 × 1]> A
#> 8 R16519 Acanthas… "(Linnaeu… <df [1 × 3]> <df [3 × 1]> A
#> 9 R18239 Acanthop… "(Forsskå… <df [1 × 3]> <df [4 × 1]> A
#> 10 R00082 Acanthop… "(Delile)… <df [1 × 3]> <df [10 × 1]> C
#> # ℹ 1,851 more rows
#> # ℹ 19 more variables: HasImpact <lgl>, IsEUConcern <lgl>, EUConcernName <chr>,
#> # IsOutermostConcern <lgl>, ConcernedOutermostRegions <list>,
#> # IsMSConcern <lgl>, ConcernedMS <list>, IsPartNative <lgl>,
#> # NativeRange <list>, IsHorizonScanning <lgl>, LastRevisionDate <lgl>,
#> # Kingdom <chr>, Phylum <chr>, Class <chr>, Order <chr>, Family <chr>,
#> # CommonNames <list>, Synonyms <list>, CBD_Pathways <list>
# Get species by `country_code`
get_species(country_code = c("IE", "LT"))
#> # A tibble: 112 × 25
#> EASINID Name Authorship FirstIntroductionsInEU PresentInCountries Status
#> <chr> <chr> <chr> <list> <list> <chr>
#> 1 R17242 Alexandr… (Howell) … <df [1 × 3]> <df [6 × 1]> A
#> 2 R00595 Allium t… L. <df [1 × 3]> <df [22 × 1]> A
#> 3 R17488 Amphibal… Darwin, 1… <df [1 × 3]> <df [26 × 1]> C
#> 4 R01070 Anser an… (Linnaeus… <df [1 × 3]> <df [55 × 1]> C
#> 5 R01255 Aponoget… L.f. <df [1 × 3]> <df [9 × 1]> A
#> 6 R01826 Azolla f… Lam. <df [1 × 3]> <df [35 × 1]> A
#> 7 R02253 Branta c… (Linnaeus… <df [1 × 3]> <df [39 × 1]> A
#> 8 R19497 Bufo bufo (Linnaeus… <df [1 × 3]> <df [42 × 1]> A
#> 9 R02476 Cabomba … A.Gray <df [1 × 3]> <df [15 × 1]> A
#> 10 R02720 Caprella… Schurin, … <df [1 × 3]> <df [12 × 1]> A
#> # ℹ 102 more rows
#> # ℹ 19 more variables: HasImpact <lgl>, IsEUConcern <lgl>, EUConcernName <chr>,
#> # IsOutermostConcern <lgl>, ConcernedOutermostRegions <list>,
#> # IsMSConcern <lgl>, ConcernedMS <list>, IsPartNative <lgl>,
#> # NativeRange <list>, IsHorizonScanning <lgl>, LastRevisionDate <lgl>,
#> # Kingdom <chr>, Phylum <chr>, Class <chr>, Order <chr>, Family <chr>,
#> # CommonNames <list>, Synonyms <list>, CBD_Pathways <list>
# Get species by `region_code`
get_species(region_code = c("ES7", "PT3"))
#> # A tibble: 362 × 25
#> EASINID Name Authorship FirstIntroductionsInEU PresentInCountries Status
#> <chr> <chr> <chr> <list> <list> <chr>
#> 1 R01047 Anolis a… Barbour &… <df [1 × 3]> <df [1 × 1]> Q
#> 2 R01048 Anolis c… Voigt, 18… <df [1 × 3]> <df [2 × 1]> Q
#> 3 R01049 Anolis e… Merrem, 1… <df [1 × 3]> <df [1 × 1]> Q
#> 4 R01050 Anolis p… Gray, 1840 <df [1 × 3]> <df [2 × 1]> Q
#> 5 R18148 Anolis s… Duméril &… <df [1 × 3]> <df [3 × 1]> Q
#> 6 R01775 Austrocy… (Lam.) Ba… <NULL> <df [3 × 1]> A
#> 7 R03305 Chamaele… Duméril &… <df [1 × 3]> <df [3 × 1]> Q
#> 8 R03485 Chlamydo… Gray, 1825 <df [1 × 3]> <df [1 × 1]> Q
#> 9 R04627 Cyclura … (Bonnater… <df [1 × 3]> <df [1 × 1]> Q
#> 10 R04773 Cytisus … (Hill) Ro… <df [1 × 3]> <df [10 × 1]> A
#> # ℹ 352 more rows
#> # ℹ 19 more variables: HasImpact <lgl>, IsEUConcern <lgl>, EUConcernName <chr>,
#> # IsOutermostConcern <lgl>, ConcernedOutermostRegions <list>,
#> # IsMSConcern <lgl>, ConcernedMS <list>, IsPartNative <lgl>,
#> # NativeRange <list>, IsHorizonScanning <lgl>, LastRevisionDate <lgl>,
#> # Kingdom <chr>, Phylum <chr>, Class <chr>, Order <chr>, Family <chr>,
#> # CommonNames <list>, Synonyms <list>, CBD_Pathways <list>
# Get species by `taxon`
get_species(taxon = c(family = "Vespidae"))
#> # A tibble: 10 × 25
#> EASINID Name Authorship FirstIntroductionsInEU PresentInCountries Status
#> <chr> <chr> <chr> <list> <list> <chr>
#> 1 R05238 "Dolicho… "(Fabrici… <df [1 × 3]> <df [17 × 1]> A
#> 2 R20108 "Laticor… "(Shoemak… <df [1 × 3]> <NULL> A
#> 3 R11911 "Poliste… "(Christ,… <df [1 × 3]> <df [34 × 1]> A
#> 4 R19647 "Vespa b… "Fabriciu… <df [1 × 3]> <df [1 × 1]> A
#> 5 R20364 "Vespa o… "Linnaeus… <NULL> <NULL> A
#> 6 R15970 "Vespa v… "Buysson,… <df [1 × 3]> <df [15 × 1]> A
#> 7 R15972 "Vespula… "(Fabrici… <df [1 × 3]> <df [51 × 1]> A
#> 8 R20193 "Vespula… "(de Saus… <NULL> <NULL> A
#> 9 R15973 "Vespula… "(Linnaeu… <df [1 × 3]> <df [28 × 1]> A
#> 10 R15974 "Vespula… "(Linnaeu… <df [1 × 3]> <df [42 × 1]> A
#> # ℹ 19 more variables: HasImpact <lgl>, IsEUConcern <lgl>, EUConcernName <chr>,
#> # IsOutermostConcern <lgl>, ConcernedOutermostRegions <list>,
#> # IsMSConcern <lgl>, ConcernedMS <list>, IsPartNative <lgl>,
#> # NativeRange <list>, IsHorizonScanning <lgl>, LastRevisionDate <lgl>,
#> # Kingdom <chr>, Phylum <chr>, Class <chr>, Order <chr>, Family <chr>,
#> # CommonNames <list>, Synonyms <list>, CBD_Pathways <list>
# Get species by full `taxonomy` levels (up to family)
get_species(
taxonomy = c(
kingdom = "Animalia",
phylum = "Arthropoda",
class = "Insecta",
order = "Hymenoptera",
family = "Vespidae"
)
)
#> # A tibble: 10 × 25
#> EASINID Name Authorship FirstIntroductionsInEU PresentInCountries Status
#> <chr> <chr> <chr> <list> <list> <chr>
#> 1 R05238 "Dolicho… "(Fabrici… <df [1 × 3]> <df [17 × 1]> A
#> 2 R20108 "Laticor… "(Shoemak… <df [1 × 3]> <NULL> A
#> 3 R11911 "Poliste… "(Christ,… <df [1 × 3]> <df [34 × 1]> A
#> 4 R19647 "Vespa b… "Fabriciu… <df [1 × 3]> <df [1 × 1]> A
#> 5 R20364 "Vespa o… "Linnaeus… <NULL> <NULL> A
#> 6 R15970 "Vespa v… "Buysson,… <df [1 × 3]> <df [15 × 1]> A
#> 7 R15972 "Vespula… "(Fabrici… <df [1 × 3]> <df [51 × 1]> A
#> 8 R20193 "Vespula… "(de Saus… <NULL> <NULL> A
#> 9 R15973 "Vespula… "(Linnaeu… <df [1 × 3]> <df [28 × 1]> A
#> 10 R15974 "Vespula… "(Linnaeu… <df [1 × 3]> <df [42 × 1]> A
#> # ℹ 19 more variables: HasImpact <lgl>, IsEUConcern <lgl>, EUConcernName <chr>,
#> # IsOutermostConcern <lgl>, ConcernedOutermostRegions <list>,
#> # IsMSConcern <lgl>, ConcernedMS <list>, IsPartNative <lgl>,
#> # NativeRange <list>, IsHorizonScanning <lgl>, LastRevisionDate <lgl>,
#> # Kingdom <chr>, Phylum <chr>, Class <chr>, Order <chr>, Family <chr>,
#> # CommonNames <list>, Synonyms <list>, CBD_Pathways <list>
# Get species present in a country
get_species(present_in_country = "BE")
#> # A tibble: 4,848 × 25
#> EASINID Name Authorship FirstIntroductionsInEU PresentInCountries Status
#> <chr> <chr> <chr> <list> <list> <chr>
#> 1 R19422 Candidat… "Fagen et… <df [1 × 3]> <df [14 × 1]> Q
#> 2 R11526 Candidat… "" <df [1 × 3]> <df [29 × 1]> Q
#> 3 R11527 Candidat… "" <df [1 × 3]> <df [23 × 1]> Q
#> 4 R11528 Candidat… "" <df [1 × 3]> <df [27 × 1]> Q
#> 5 R19432 Candidat… "" <df [1 × 3]> <df [11 × 1]> Q
#> 6 R19434 Candidat… "" <df [1 × 3]> <df [9 × 1]> Q
#> 7 R00001 Abax par… "(Duftsch… <df [1 × 3]> <df [11 × 1]> A
#> 8 R00005 Abies al… "Mill." <df [1 × 3]> <df [38 × 1]> A
#> 9 R00007 Abies ce… "Loudon" <df [1 × 3]> <df [13 × 1]> A
#> 10 R00011 Abies gr… "(Douglas… <df [1 × 3]> <df [15 × 1]> A
#> # ℹ 4,838 more rows
#> # ℹ 19 more variables: HasImpact <lgl>, IsEUConcern <lgl>, EUConcernName <chr>,
#> # IsOutermostConcern <lgl>, ConcernedOutermostRegions <list>,
#> # IsMSConcern <lgl>, ConcernedMS <list>, IsPartNative <lgl>,
#> # NativeRange <list>, IsHorizonScanning <lgl>, LastRevisionDate <lgl>,
#> # Kingdom <chr>, Phylum <chr>, Class <chr>, Order <chr>, Family <chr>,
#> # CommonNames <list>, Synonyms <list>, CBD_Pathways <list>